Welcome to the DynAMoS research group!
The development of ultrashort laser pulses, first in the femtosecond and more recently in the attosecond domain, allows to follow the real-time dynamics of complex, anharmonic, correlated many-body systems, yielding a wealth of detailed dynamical information which was formerly unavailable. The interpretation of those measurements require detailed theoretical simulations, which in turn demand the incorporation of the quantum nature of atomic motion. However, the direct solution of the time-dependent Schrödinger equation demands the use of a very large mesh of grid points or a large number of basis functions to represent the spreading of the wave packet in a variety of molecular phenomena.
Consequently, there is a sustained interest in the development of new theoretical and computational approaches that may cope accurately with wave packet propagation within the typical spatial and time scales. To the purpose of reducing the computational cost, a large number of semiclassical and hybrid quantum-classical methodologies have been developed. These methods aim to exploit the local character of classical dynamics in phase space, which results in a significant reduction of the computational cost. Our research group is focused in method development to describe the quantum dynamics of ultrafast processes, building for instance novel quantum-mechanical mappings to equivalent quasi-classical systems to describe a variety of phenomena. We apply these methods to a diversity of systems with potential applications in nanotechnology, ranging from the hydrogen storage in nanostructrured materials and the study of quantum dots to the optical properties of conjugated molecular systems used as building blocks of organic semiconductors and solar cells
- Quantum dynamics simulations of ultrafast molecular processes.
- Method development of hybrid quantum-classical approaches.
- Hydrogen production and storage in different nanostructures.
- Optical properties of conjugated molecular systems with potential in nanotechnological applications.
- Open quantum systems and applications to molecular reactions at surfaces.
- Electron dynamics in quantum dots.
Investigadores
- Dr. Lídice Cruz-Rodríguez [PhD 2018] (Quantum dynamics with trajectories)
- Raidel Martin-Barrios [MSc 2018] (Development of hybrid quantum-classical methods applied to gas-phase reaction dynamics)
- Alejandro R. Ramos-Ramos [MSc 2018, Lic 2016] (Control of IR laser-driving molecular reactions on systems relevant for photocatalysis and solar cells)
- Beatriz Rodríguez-Hernández [Lic 2015] (Non-adiabatic excited state molecular dynamics in systems relevant in organic semiconductors and solar cells)
- Joeluis Cerutti Torres [MSc 2018, Ing 2016] (Hydrogen storage in metal-organic frameworks)
- Chris Meier (Université Paul Sabatier)
- Nadine Halbertstadt (Université Paul Sabatier)
- Pascal Larregaray (Université Bordeaux)
- Jean Christophe Tremblay (Université Lorraine)
- Peter Saalfrank (Potsdam Universität)
- Annika Bande (Helmholtz Zentrum Berlin)
- Burkhard Schmidt (Freie Universität Berlin)
- Oliver Kühn (Universität Rostock)
- Thomas Heine (Technische Universität Dresden)
- Gothard Seifert (Technische Universität Dresden)
- Thomas Jagau (Lüdwig-Maximilians Universität München)
- Sebastián Fernández-Alberti (Universidad Nacional de Quilmes)
- Federico Pont (Universidad Nacional de Córdoba)
- Jesús Rubayo-Soneira (Instituto Superior de Tecnologías y Ciencias Aplicadas)
- Germán Rojas-Lorenzo (Instituto Superior de Tecnologías y Ciencias Aplicadas)
- Royle Pérez-Castillo [Lic 2018] (Density functional theory of nuclei applied to the study of atomic clusters)
- Juan Carlos Acosta-Matos [Lic 2019] [now at CEADEN] (Quantum dynamics with trajectories)
- Liang Ricardo Villarrubia-Rio [Lic 2019] [now at Universidad de Oriente]
- Fabian Tamayo-Delgado [Lic 2019] [now at Universidad de Oriente]
- Isaac Mora (Theory of open quantum systems applied to gas-phase reaction dynamics)
- Miguel Martin (Control theory method development to study non-adiabatic dynamics)
- Carlos Andres Piñero (Quantum dynamics with trajectories)
- Dr. Fermín Rodríguez-Hernández [PhD 2017, MSc 2013, Lic 2011, now postdoc in the MPISKS-Dresden]
- Elena Esther Torres-Miyares [Lic 2017]
- Víctor Manuel Freixas-Lemus [Lic 2015, now PhD student in National University of Quilmes]
- Eduardo Lázaro Rodrı́guez-Rodrı́guez [MSc 2013, now in Universidad Central del Ecuador]
- Laura Alfonso-Hernández [Lic 2010, now in Centro Atómico de Bariloche]
- Mario Hernández-Vera [Lic 2008, now in University Ludwig-Maximilians Munich]
- Leonardo Garcı́a Reyes [Lic 2008, now in CENTIS]
Publicaciones
J.C. Acosta-Matos, A. Martínez-Mesa , L. Uranga-Piña, «Trajectory-based modelling of the quantum dynamics of vibrational predissociation: Application to the Ar Br2 ( v = 24) complex», Chem. Phys. 529, 110544 (2020).
L. Cruz-Rodriguez, L. Uranga-Pina, A. Martinez-Mesa, C. Meier “Quantum dynamics modeled by interacting trajectories”, Chem. Phys. 503, 39 (2018).
B. Rodriguez-Hernandez, D. Ondarse-Alvarez, N. Oldani, A. Martinez-Mesa, L. Uranga-Pina, S. Tretiak, S. Fernandez-Alberti, “Modification of optical properties and excited-state dynamics by linearizing cyclic paraphenylene chromophores”, J. Phys. Chem. C 122, 16639 (2018).
F. Rodriguez-Hernandez, D. C. Tranca, A. Martinez-Mesa, L. Uranga-Pina, G. Seifert, “Water splitting on transition metal active sites at TiO2-based electrodes: a small cluster study”, J. Phys. Chem. C 120, 25851 (2016).
A. Martinez-Mesa, P. Saalfrank, “Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case”, J. Chem. Phys. 142, 194107 (2015).
L. Uranga-Pina, J.C. Tremblay, “Relaxation dynamics in quantum dissipative systems: the microscopic effect of intramolecular vibrational energy redistribution”, J. Chem. Phys. 141, 074703 (2014).
A. Martı́nez-Mesa, L. Zhechkov, S. N. Yurchenko, S. Patchkovskii, T. Heine, G. Seifert, J. Rubayo-Soneira, “Hydrogen physisorption on carbon foams upon inclusion of many-body and quantum delocalization effects”, J. Phys. Chem. C 116, 19543 (2012)